3.8 Article Proceedings Paper

Learning sparse overcomplete codes for images

Publisher

SPRINGER
DOI: 10.1007/s11265-006-9774-5

Keywords

sparse overcomplete coding; FOCUSS-CNDL; non-negative; matching pursuit; image compression; independent components analysis (ICA); sparse Bayesian learning

Ask authors/readers for more resources

Images can be coded accurately using a sparse set of vectors from a learned overcomplete dictionary, with potential applications in image compression and feature selection for pattern recognition. We present a survey of algorithms that perform dictionary learning and sparse coding and make three contributions. First, we compare our overcomplete dictionary learning algorithm (FOCUSS-CNDL) with overcomplete independent component analysis (ICA). Second, noting that once a dictionary has been learned in a given domain the problem becomes one of choosing the vectors to form an accurate, sparse representation, we compare a recently developed algorithm (sparse Bayesian learning with adjustable variance Gaussians, SBL-AVG) to well known methods of subset selection: matching pursuit and FOCUSS. Third, noting that in some cases it may be necessary to find a non-negative sparse coding, we present a modified version of the FOCUSS algorithm that can find such non-negative codings. Efficient parallel implementations in VLSI could make these algorithms more practical for many applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available