4.5 Article

Diabetes and myocarditis in voles and lemmings at cyclic peak densities -: induced by Ljungan virus?

Journal

OECOLOGIA
Volume 150, Issue 1, Pages 1-7

Publisher

SPRINGER
DOI: 10.1007/s00442-006-0493-1

Keywords

blood glucose; disease; pathology; population cycles; stress

Categories

Ask authors/readers for more resources

Although it is well-documented from theoretical studies that pathogens have the capacity to generate cycles, the occurrence and role of pathogens and disease have been poorly empirically studied in cyclic voles and lemmings. In screening for the occurrence of disease in cyclic vole and lemming populations, we found that a high proportion of live-trapped Clethrionomys glareolus, C. rufocanus, Microtus agrestis and Lemmus lemmus at high collective peak density, shortly before the decline, suffered from diabetes or myocarditis in northern Scandinavia. A high frequency of animals had abnormal blood glucose (BG) levels at the time of trapping (5-33%). In contrast, C. rufocanus individuals tested at a much lower overall density, and at an earlier stage relative to the decline in the following cycle, showed normal BG concentrations. However, a high proportion (43%) of a sample of these individuals kept in captivity developed clinical diabetes within five weeks, as determined by BG levels and a glucose tolerance test performed at that later time. A new picornavirus isolated from the rodents, Ljungan virus (LV), was assumed to cause the diseases, as LV-induced diabetes and myocarditis, as well as encephalitis and fetal deaths, were observed in laboratory mice. We hypothesize that LV infection significantly affects morbidity and mortality rates in the wild, either directly or indirectly, by predisposing the rodents to predation, and is at least involved in causing the regular, rapid population declines of these cyclic voles and lemmings. Increased stress at peak densities is thought to be an important trigger for the development of disease, as the occurrence of disease in laboratory mice has been found to be triggered by introducing stress to LV-infected animals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available