4.3 Article

Enhanced hippocampal neurodegeneration after traumatic or kainate excitotoxicity in GFAP-null mice

Journal

JOURNAL OF CLINICAL NEUROSCIENCE
Volume 13, Issue 9, Pages 934-938

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jocn.2005.10.018

Keywords

astrocytes; glial fibrillary acidic protein; hippocampus; excitotoxicity; kainate; seizures; traumatic brain injury

Ask authors/readers for more resources

Astrocytes perform a variety of functions in the adult central nervous system. Recent evidence suggests that the upregulation of glial fibrillary acidic protein (GFAP), an astrocyte-specific intermediate filament component, is a biological marker of neurotoxicity after cerebral injury. We herein compared the response to traumatic brain injury or kainic acid (KA)-induced neurotoxicity in GFAP knockout (GFAP-KO) and wild-type (WT) mice. Seventy-two hours after injury, all GFAP-KO mice showed hippocampal CA3 neurodegeneration, whereas WT mice did not show neurodegeneration. Seventy-two hours after KA administration, GFAP-KO mice were more susceptible to KA-induced seizures and had an increased number of pyknotic damaged CA3 neurons than did WT mice. These results indicate that GFAP plays a crucial role in pyramidal neuronal survival after injury or KA-induced neurotoxicity. (C) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available