4.8 Article

Bioremediation of zinc using Desulfotomaculum nigrificans:: Bioprecipitation and characterization studies

Journal

WATER RESEARCH
Volume 40, Issue 19, Pages 3628-3636

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2006.06.013

Keywords

sulfate reducing bacteria (SRB); zinc sulfate; Desulfotomaculum nigrificans; bioremediation; biogenic zinc sulfide

Ask authors/readers for more resources

Desulfotomaculum nigrificans, a typical sulfate reducing bacterium (SRB) was successfully grown in the presence of 12-210 mg/L of zinc. Complete bioremoval of zinc was achieved in 2 days for 12 mg/L while the bioremoval efficiency was about 70% in 40 days in the presence of 210 mg/L initial concentration of zinc, attesting to the inhibition of bacterial cell growth at higher zinc concentrations. The bioremoval mechanism was predominantly governed by bioprecipitation with biosorption contributing to a minor extent. The amount of protein present in the extracellular secretions obtained by growth of SRB in modified Baars' medium devoid of iron was the highest followed by those obtained in the presence of zinc or iron, in that order. Bioremediation studies carried out using a specially designed set-up, facilitating the transfer of biogenically produced hydrogen sulfide gas to a separate precipitation assembly, confirmed that zinc could be successfully precipitated from its corresponding sulfate solution, varying in concentration from 10 to 20,000 mg/L. Detailed characterization of the various zinc sulfide precipitates by EDAX and X-ray diffraction analysis conformed to wurtzite structure. The isoelectric points of high purity zinc sulfide and that of chemically synthesized, biogenically produced and zinc sulfide precipitated using bacterially produced hydrogen sulfide gas (BPH-ZnS) were located at pH 3, 7.8, 2.8 and 8, respectively. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available