4.6 Article

Sodicity-induced land degradation and its sustainable management: Problems and prospects

Journal

LAND DEGRADATION & DEVELOPMENT
Volume 17, Issue 6, Pages 661-676

Publisher

WILEY
DOI: 10.1002/ldr.751

Keywords

sodic soil; soil amelioration; gypsum; phytoremediation; soil tillage; plant available nutrients; crop productivity; carbon sequestration

Ask authors/readers for more resources

Currently at least 20 percent of the world's irrigated land is salt-affected. However, projections of global population growth, and of an increased demand for food and fibre, suggest that larger areas of salt-affected soil will need to be cropped in the future. About 60 percent of salt-affected soils are sodic, and much of this land is farmed by smallholders. Ameliorating such soils requires the application of a source of calcium (Ca2+), which replaces excess sodium (Na+) at the cation exchange sites. The displaced Na+ is then leached from the root zone through excess irrigation, a process that requires adequate flows of water through the soil. However, it must now be recognized that we can no longer conduct sodic soil amelioration and management solely with the aim of achieving high levels of crop productivity. The economic, social, and environmental impacts of different soil-amelioration options must also be considered. A holistic approach is therefore needed. This should consider the cost and availability of the inputs needed for amelioration, the soil depth, the level to which sodicity needs to be reduced to allow cropping, the volume and quality of drainage water generated during amelioration, and the options available for drainage-water disposal or reuse. The quality and cost of water available for post-amelioration crops, and the economic value of the crops grown during and after amelioration should also be taken into account, as should farmers' livelihoods, the environmental implications of amelioration (such as carbon sequestration), and the long-term sustainable use of the ameliorated site (in terms of productivity and market value). Consideration of these factors, with the participation of key stakeholders, could sustainably improve sodic soil productivity and help to transform such soils into a useful economic resource. Such an approach would also aid environmental conservation, by minimizing the chances of secondary sodicity developing in soils, particularly under irrigated agriculture. Copyright (c) 2006 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available