4.3 Article

Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway

Journal

SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY
Volume 41, Issue 11, Pages 1279-1289

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00365520600641480

Keywords

bicarbonate secretion; enterocyte clusters; intracellular calcium; mucosal protection; purinergic stimulation

Ask authors/readers for more resources

Objective. Serotonin (5-HT) is present in much larger amounts in the gut than in the central nervous system and is predominantly synthesized and stored in mucosal enterochromaffin cells. Bicarbonate secretion by the duodenal mucosa is the major mechanism in maintaining mucosal integrity, neutralizing invading protons within the surface mucus gel. In this study the role of local 5-HT in the control of the protective secretion was investigated. Material and methods. A segment of proximal duodenum was perfused in situ in anaesthetized rats and the alkaline secretion was continuously recorded by pH-stat. Intracellular calcium signalling was measured in clusters of human and rat duodenal enterocytes devoid of neural tissue. After loading with the fluorescent probe, fura-2, the clusters were attached to the bottom of a temperature-controlled perfusion chamber. Results. Close intra-arterial infusion to the duodenal segment of 5-HT (20 - 200 nmol kg(-1) h(-1)) dose-dependently increased duodenal mucosal HCO3 secretion. A higher dose (2000 nmol kg(-1) h(-1)) did not further increase secretion. Responses were inhibited by the ganglionic blocker and nicotinic receptor antagonist hexamethonium, and were abolished by the 5-HT4 receptor antagonist SB 204070. The 5-HT3 antagonist tropisetron, in contrast, caused only slight inhibition. Viable human and rat duodenal enterocytes responded to 5-HT (100 - 500 nM) with an increase in intracellular calcium concentration. Pretreatment with SB 204070 or removal of external calcium abolished the response. Conclusions. Stimulation of the duodenal protective secretion by 5-HT thus involves receptors of the 5-HT4 subtype as well as nicotinic transmission, the myenteric plexus being a likely location. In addition, serotonin acts on enterocyte membrane receptors, inducing intracellular calcium signalling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available