4.7 Article

Solute-solvent and solvent-solvent interactions in the preferential solvation of 4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide in 24 binary solvent mixtures

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2005.12.005

Keywords

preferential solvation; binary mixtures; merocyanines; solvent effects; solvent-solvent interactions; solute-solvent interactions

Categories

Ask authors/readers for more resources

The molar transition energy (E-T) polarity values for the dye 4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide were collected in binary mixtures comprising a hydrogen-bond accepting (HBA) solvent (acetone, acetonitrile, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide (DMF)) and a hydrogen-bond donating (HBD) solvent (water, methanol, ethanol, propan-2-ol, and butan-1-ol). Data referring to mixtures of water with alcohols were also analyzed. These data were used in the study of the preferential solvation of the probe, in terms of both solute-solvent and solvent-solvent interactions. These latter interactions are of importance in explaining the synergistic behavior observed for many mixed solvent systems. All data were successfully fitted to a model based on solvent-exchange equilibria. The E-T values of the dye dissolved in the solvents show that the position of the solvatochromic absorption band of the dye is dependent on the medium polarity. The solvation of the dye in HBA solvents occurs with a very important contribution from ion-dipole interactions. In HBD solvents, the hydrogen bonding between the dimethylamino group in the dye and the OH group in the solvent plays an important role in the solvation of the dye. The interaction of the hydroxylic solvent with the other component in the mixture can lead to the formation of hydrogen-bonded complexes, which solvate the dye using a lower polar moiety, i.e. alkyl groups in the solvents. The dye has a hydrophobic nature and a dimethylamino group with a minor capability for hydrogen bonding with the medium in comparison with the phenolate group present in Reichardt's pyridiniophenolate. Thus, the probe is able to detect solvent-solvent interactions, which are implicit to the observed synergistic behavior. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available