4.6 Article

Single-particle versus pair condensation of hard-core bosons with correlated hopping

Journal

PHYSICAL REVIEW B
Volume 74, Issue 17, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.174508

Keywords

-

Ask authors/readers for more resources

We investigate the consequences of correlated hopping on the ground state properties of hard-core bosons on a square lattice as revealed by extensive exact diagonalizations and quantum Monte Carlo simulations. While for noninteracting hard-core bosons the effective attraction induced by the correlated hopping leads to phase separation at low density, we show that a modest nearest-neighbor repulsion suppresses phase separation, leading to a remarkable low-density pairing phase with no single particle Bose-Einstein condensation but long-range two-particle correlations, signaling a condensation of pairs. We also explain why the unusual properties of the pairing phase are a real challenge for standard one-worm quantum Monte Carlo simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available