4.6 Article

Role of selenium in spermatogenesis: Differential expression of cjun and cfos in tubular cells of mice testis

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 292, Issue 1-2, Pages 27-38

Publisher

SPRINGER
DOI: 10.1007/s11010-006-9168-9

Keywords

testes; cjun; cfos; western blot; immunohistochemistry; selenium

Categories

Ask authors/readers for more resources

Selenium (Se) is an essential dietary trace element, involved in the process of male reproduction. Best known as an antioxidant, it acts through various selenoproteins viz. glutathione peroxidase, thioredoxin reductase and selenoprotein P. The aim of the present study was to identify the underlying molecular mechanism of Se in regulating spermatogenesis. Different Se status: deficient, adequate and excess Se, were generated in male Balb/c mice by feeding yeast based Se deficient diet, and deficient diet supplemented with Se as sodium selenite (0.2 and 1 ppm Se) respectively for a period of 4 and 8 weeks. Se levels and glutathione peroxidase (GSH-Px) activity were significantly reduced in the Se deficient mice and enhanced in Se supplemented group. Reduction in the number of post-meiotic germ cells viz. spermatids and spermatozoa, were observed in the deficient groups indicating loss in fertility and reproductive ability. cjun and cfos (components of transcription factor AP1) regulate cellular growth and differentiation and also exert a regulatory role in steroidogenesis and spermatogenesis. Changes in the mRNA expression of cjun and cfos were observed. Concomitant with this, western blot revealed that the protein expression profile for both these genes was significantly altered in the Se deficient and Se excess groups. Further immunohistochemical analysis showed that, both these genes had identical cellular localization indicating that they do not work alone but act synergistically as AP1. cjun and cfos expression was greater in the early mitotic stages-spermatogonia and spermatocytes in the Se adequate controls. It decreased in the meiotic stages and then again peaked around the later stages-elongating spermatids and spermatozoa. However in the Se deficient mice, weaker expression was observed in the spermatogonia with a complete absence of expression near the lumen. No visible changes in cjun/cfos expression and immunohistochemical localization were observed in the excess group compared to the Se adequate controls. In conclusion, the present study clearly demonstrates that alteration in Se supply leads to decreased expression pattern for both cJun and cFos in the testicular germ cells which might be responsible for decreased germ cell number, differentiation and reduced fertility and accounts for the mechanism of Se action in regulating spermatogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available