4.4 Article

Heat tolerance of Salmonella enterica serovars Agona, Enteritidis, and Typhimurium in peanut butter

Journal

JOURNAL OF FOOD PROTECTION
Volume 69, Issue 11, Pages 2687-2691

Publisher

INT ASSOC FOOD PROTECTION
DOI: 10.4315/0362-028X-69.11.2687

Keywords

-

Ask authors/readers for more resources

Recent large foodborne outbreaks caused by Salmonella enterica serovars have been associated with consumption of foods with high fat content and reduced water activity, even though their ingredients usually undergo pasteurization. The present study was focused on the heat tolerance of Salmonella enterica serovars Agona, Enteritidis, and Typhimurium in peanut butter. The Salmonella serovars in the peanut butter were resistant to heat, and even at a temperature as high as 90 degrees C only 3.2-log reduction in CFU was observed. The obtained thermal inactivation curves were upwardly concave, indicating rapid death at the beginning (10 min) followed by lower death rates and an asymptotic tail. The curves fitted the nonlinear Weibull model with beta parameters < 1, indicating that the remaining cells have a lower probability of dying. beta at 70 degrees C (0.40 +/- 0.04) was significantly lower than beta at 80 degrees C (0.73 +/- 0.19) and 90 degrees C (0.69 +/- 0.17). Very little decrease in the viable population (less than 2-log decrease) was noted in cultures that were exposed to a second thermal treatment. Peanut butter is a highly concentrated colloidal suspension of lipid and water in a peanut meal phase. We hypothesized that differences in the local environments of the bacteria, with respect to fat content or water activity, explained the observed distribution and high portion of surviving cells (0.1%, independent of the initial cell number). These results demonstrate that thermal treatments are inadequate to consistently destroy Salmonella in highly contaminated peanut butter and that the pasteurization process cannot be improved significantly by longer treatment or higher temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available