4.4 Article

Molecular architecture of the pyruvate dehydrogenase complex: bridging the gap

Journal

BIOCHEMICAL SOCIETY TRANSACTIONS
Volume 34, Issue -, Pages 815-818

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BST0340815

Keywords

active-site coupling; energy metabolism; mammal; molecular architecture; 2-oxoacid dehydrogenase; pyruvate dehydrogenase

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

The PDC (pyruvate dehydrogenase complex) is a high-molecular-mass (4-11 MDa) complex of critical importance for glucose homoeostasis in mammals. Its multi-enzyme structure allows for substrate channelling and active-site coupling: sequential catalytic reactions proceed through the rapid transfer of intermediates between individual components and without diffusion into the bulk medium due to its 'swinging arm' that is able to visit all PDC active sites. Optimal positioning of individual components within this multi-subunit complex further affects the efficiency of the overall reaction and stability of its intermediates. Mammalian PDC comprises a 60-meric pentagonal dodecahedral dihydrolipoamide (E2) core attached to which are 30 pyruvate decarboxylase (E1) heterotetramers and six dihydrolipoamide (E3) homodimers at maximal occupancy. Stable E3 integration is mediated by an accessory E3-binding protein associated with the E2 core. Association of the peripheral E1 and E3 enzymes with the PDC core has been studied intensively in recent years and has yielded some interesting and substantial differences when compared with prokaryotic PDCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available