4.7 Article

Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 41, Issue 9, Pages 1361-1371

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2006.07.007

Keywords

keratinocytes; UVB radiation; reactive oxygen species; apoptosis signal regulating kinase-1; p38 MAPK; apoptosis; free radicals

Ask authors/readers for more resources

The p38 MAPK pathway controls critical premitochondrial events culminating in apoptosis of UVB-irradiated human keratinocytes, but the upstream mediators of this stress signal are not completely defined. This study shows that in human keratinocytes exposed to UVB the generation of reactive oxygen species (ROS) acts as a mediator of apoptosis signal regulating kinase-1 (Ask-1), a redox-sensitive mitogen-activated protein kinase kinase kinase (MAP3K) regulating p38 MAPK and JNK cascades. The NADPH oxidase antagonist diphenylene iodonium chloride and the EGFR inhibitor AG1487 prevent UVB-mediated ROS generation, the activation of the Ask-1-p38 MAPK stress response pathway, and apoptosis, evidencing the link existing between the early plasma membrane-generated ROS and the activation of a lethal cascade initiated by Ask-1. Consistent with this, Ask-1 overexpression considerably sensitizes keratinocytes to UVB-induced mitochondrial apoptosis. Although the JNK pathway is also stimulated after UVB, the killing effect of Ask-1 overexpression is reverted by p38 MAPK inhibition, suggesting that Ask-1 exerts its lethal effects mainly through the p38 MAPK pathway. Moreover, p38 alpha(-/-) murine embryonic fibroblasts are protected from UVB-induced apoptosis even if JNK activation is fully preserved. These results argue for an important role of the UVB-generated ROS as mediators of the Ask1-p38 MAPK pathway that, by culminating in apoptosis, restrains the propagation of potentially mutagenic keratinocytes. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available