4.5 Article

Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics

Journal

PLATELETS
Volume 17, Issue 7, Pages 462-469

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09537100600758867

Keywords

bone tissue engineering; ceramics; mesenchymal stem cells; platelet-rich plasma; xenogene media supplements

Ask authors/readers for more resources

Introduction: Mesenchymal stem cells (MSC) applied to bone substitution materials can improve bone healing. Bone formation in biocomposites is highly dependent on the kind of biomaterial, its pre-treatment and the applied cells. Potentially immunogenic or infectious supplements such as fetal calf serum (FCS) should be avoided in cell expansion media. Therefore, we developed an expansion protocol free of xenogenic supplements. Cells expanded with two different media were tested on distinct biomaterials for their bone formation capacity after ectopic implantation in vivo, as well as for their growth rate and differentiation capacity in vitro. Methods: MSC of six donors were expanded with cell expansion medium containing FCS (2%) or platelet-rich plasma (PRP, 3%). Their growth rate and osteogenic, adipogenic and chondrogenic differentiation capacity were compared in vitro. For the in vivo bone formation assay, expanded cells (2 x 10(5) or 2 x 10(6)) were seeded on calcium-deficient hydroxyapatite (CDHA; n = 12) and on beta-tricalcium phosphate (beta-TCP; n = 12) blocks, which had been coated with either fibronectin or human serum. They were then implanted subcutaneously in severe combined immunodeficient mice (SCID), harvested after 8 weeks and analysed by histology. Bone formation was assessed by a semi-quantitative bone score, after toluidine blue and alizarin red staining. Human cells were detected by an in situ hybridisation for human-specific alu sequences. Results: PRP-supplemented expansion medium yielded two-fold higher cell numbers compared to medium with FCS (P = 0.046) after 3 weeks (four passages) and retained a similar capacity to differentiate towards the osteogenic, chondrogenic and adipogenic lineage. In vivo bone formation was equal for cells expanded with PRP and FCS and depended on the specific surface area of the carrier. CDHA (specific surface area (SSA) 48m(2)/g) showed a significantly better bone formation in deep layers (P = 0.005) than beta-TCP (SSA 0.5 m(2)/g). Fibronectin-coating of the ceramics was slightly superior to coating with human serum (P = 0.045). Conclusions: The replacement of FCS by PRP eliminated risks connected with the use of xenogeneic supplements. It improved expansion of MSC and retained their differentiation and in vivo bone formation capacity in a setting adaptable to autogenous use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available