4.5 Article

Mechanical properties and morphological behavior of calcium carbonate-filled polypropylene in dynamic injection molding

Journal

POLYMER INTERNATIONAL
Volume 55, Issue 11, Pages 1330-1335

Publisher

WILEY
DOI: 10.1002/pi.2088

Keywords

dynamic process; polypropylene; calcium carbonate; injection molding; mechanical properties; morphological behavior

Ask authors/readers for more resources

A custom-made electromagnetic dynamic injection molding machine was adopted to study the mechanical properties and morphological behavior of calcium carbonate-filled polypropylene (PP) in a dynamic injection molding process. The influence of vibration amplitude and frequency on the mechanical properties and morphological behavior of samples was investigated using tensile tests, notched Izod impact tests, differential scanning calorimetry, and scanning electronic microscopy. The tensile stress and the impact stress for all samples investigated were found to increase in a nonlinear manner with increasing vibration amplitude and frequency. The tensile stress reached a maximum value at about 8 Hz and 0.15 mm for neat PP and PP filled with 3, 20, and 30 wt% CaCO3. For PP filled with 40 wt% CaCO3, the tensile stress reached a maximum value at about 12 Hz and 0.2 mm. The impact stress reached a maximum value at about 12 Hz. From DSC experiments it was shown that the melting temperature slightly increased, but no new polymeric crystalline peak appeared under the vibration force field. The CaCO3 particles were diffused easily and distributed evenly in the PP melt under the vibration force field, so it is very useful in improving the quality of injection products. (C) 2006 Society of Chemical Industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available