4.5 Article

Iron constraints on planktonic primary production in oligotrophic lakes

Journal

ECOSYSTEMS
Volume 9, Issue 7, Pages 1094-1105

Publisher

SPRINGER
DOI: 10.1007/s10021-006-0167-1

Keywords

phytoplankton; primary production; nutrient limitation; micronutrients; oligotrophic clearwater lakes

Categories

Ask authors/readers for more resources

Phototrophic primary production is a fundamental ecosystem process, and it is ultimately constrained by access to limiting nutrients. Whereas most research on nutrient limitation of lacustrine phytoplankton has focused on phosphorus (P) and nitrogen (N) limitation, there is growing evidence that iron (Fe) limitation may be more common than previously acknowledged. Here we show that P was the nutrient that stimulated phytoplankton primary production most strongly in seven out of nine bioassay experiments with natural lake water from oligotrophic clearwater lakes. However, Fe put constraints on phytoplankton production in eight lakes. In one of these lakes, Fe was the nutrient that stimulated primary production most, and concurrent P and Fe limitation was observed in seven lakes. The effect of Fe addition increased with decreasing lake water concentrations of total phosphorus and dissolved organic matter. Possible mechanisms are low import rates and low bioavailability of Fe in the absence of organic chelators. The experimental results were used to predict the relative strength of Fe, N, and P limitation in 659 oligotrophic clearwater lakes (with total phosphorus <= 0.2 mu M P and total organic carbon < 6 mg C l(-1)) from a national lake survey. Fe was predicted to have a positive effect in 88% of these lakes, and to be the nutrient with the strongest effect in 30% of the lakes. In conclusion, Fe, along with P and N, is an important factor constraining primary production in oligotrophic clearwater lakes, which is a common lake-type throughout the northern biomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available