4.6 Article

Hominoid-specific SPANXA/D genes demonstrate differential expression in individuals and protein localization to a distinct nuclear envelope domain during spermatid morphogenesis

Journal

MOLECULAR HUMAN REPRODUCTION
Volume 12, Issue 11, Pages 703-716

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molehr/gal079

Keywords

cancer; hominoids; spermatozoa; spermiogenesis; testis

Funding

  1. NICHD NIH HHS [U54HD29099, D43TW/HD00654] Funding Source: Medline

Ask authors/readers for more resources

Human sperm protein associated with the nucleus on the X chromosome consists of a five-member gene family (SPANXA1, SPANXA2, SPANXB, SPANXC and SPANXD) clustered at Xq27.1. Evolved from an ancestral SPANX-N gene family (at Xq27 and Xp11) present in all primates as well as in rats and mice, the SPANXA/D family is present only in humans, bonobos, chimpanzees and gorillas. Among hominoid-specific genes, the SPANXA/D gene family is considered to be undergoing rapid positive selection in its coding region. In this study, RT-PCR of human testis mRNA from individuals showed that, although all SPANXA/D genes are expressed in humans, differences are evident. In particular, SPANXC is expressed only in a subset of men. The SPANXa/d protein localized to the nuclear envelope of round, condensing and elongating spermatids, specifically to regions that do not underlie the developing acrosome. During spermiogenesis, the SPANXa/d-positive domain migrated into the base of the head as the redundant nuclear envelope that protrudes into the residual cytoplasm. Post-testicular modification of the SPANXa/d proteins was noted, as were PEST (proline, glutamic acid, serine, and threonine rich regions) domains. It is concluded that the duplication of the SPANX-N gene family that occurred 6-11 MYA resulted in a new gene family, SPANXA/D, that plays a role during spermiogenesis. The SPANXa/d gene products are among the few examples of X-linked nuclear proteins expressed following meiosis. Their localization to non-acrosomal domains of the nuclear envelope adjacent to regions of euchromatin and their redistribution to the redundant nuclear envelope during spermiogenesis provide a biomarker for the redundant nuclear envelope of spermatids and spermatozoa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available