4.2 Article

Evidence against a single coordinate system representation in the motor cortex

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 175, Issue 2, Pages 197-210

Publisher

SPRINGER
DOI: 10.1007/s00221-006-0556-x

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [R01 NS045853, N01-NS-2-2345, R01-NS45853-01A2] Funding Source: Medline

Ask authors/readers for more resources

Understanding the coordinate systems in which the motor cortical cells encode movement parameters such as direction is a fundamental yet unresolved issue. Although many studies have assumed that motor cortex encodes direction in an extrinsic, Cartesian (CA) coordinate system, other studies have provided evidence for encoding in intermediate coordinate systems such as a shoulder-centered (SC) or in a purely intrinsic, joint-angle-based (JA) coordinate frame. By simultaneously recording from multiple single units in primary motor cortex, we examined movement direction encoding under each of these three coordinate systems. We directly compared the degree of directional tuning invariance over multiple sub-regions in the workspace. We also compared the mutual information between neuronal firing rate and movement direction in the three systems. We observed a broad range of directional invariance in all three coordinate systems with no strong dominance of any single coordinate system. The mutual information analyses corroborated this observation. However, we found a small but significant bias toward the SC coordinate frame, which was also supported by population vector decoding. Similar results were found when we compared hand/torque force direction encoding in all three coordinate systems. These results suggest that the motor cortex employs a coordinate system that is yet to be discovered or perhaps that the motor cortex should not be viewed as a substrate for any coordinate system representation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available