4.4 Article

Capacity of Cr(VI) reduction in an aqueous solution using different sources of zerovalent irons

Journal

KOREAN JOURNAL OF CHEMICAL ENGINEERING
Volume 23, Issue 6, Pages 935-939

Publisher

KOREAN INST CHEM ENGINEERS
DOI: 10.1007/s11814-006-0011-5

Keywords

Cr(VI) reduction; zerovalent iron; first-order kinetics; reduction capacity

Ask authors/readers for more resources

Zerovalent iron (ZVI) has drawn intense interest as an effective and inexpensive tool to enhance degradation of various environmental contaminants. Reduction of Cr(VI) to Cr(III) by ZVI merits environmental concern as a hazardous species is transformed into a non-hazardous one. Objectives of this research were to assess kinetics and capacity of Cr(VI) reduction by different sources of ZVIs, of which chemical parameters can base in situ application of ZVI to treat Cr(VI) contaminated water. Reduction kinetics were first-order and rapid showing that 50% of the initial Cr(VI) was reduced within 7.0 to 347 min depending on Cr(VI) concentration, temperature and ZVI source. The reduction rates were increased with decreasing the initial Cr(VI) concentrations and increasing the reaction temperatures. The J ZVI (Shinyo Pure Chemical Co., Japan) was more effective in Cr(VI) reduction than PU (Peerless Metal Powders, USA). The maximum reduction capacities of J and PU ZVIs at 25 degrees C were 0.045 and 0.042 mmol g(-1) Fe-0, respectively. A relatively higher value of the net reaction energy (E-a) indicated that Cr(VI) reduction by ZVI was temperature dependent and controlled by surface properties of ZVI. Chemical parameters involved in the Cr(VI) reduction by ZVI such as temperature quotient, kinetic rates, and stoichiometry indicated that the ZVI might be effective for in situ treatment of the Cr(VI) containing wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available