4.6 Article

Koopmans' theorem for large molecular systems within density functional theory

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 110, Issue 43, Pages 12005-12009

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp063669m

Keywords

-

Ask authors/readers for more resources

It is shown that in density functional theory (DFT), Koopmans' theorem for a large molecular system can be stated as follows: The ionization energy of the system equals the negative of the highest occupied molecular orbital (HOMO) energy plus the Coulomb electrostatic energy of removing an electron from the system, or equivalently, the ionization energy of an N-electron system is the negative of the arithmetic average of the HOMO energy of this system and the lowest unoccupied molecular orbital (LUMO) energy of the (N-1)-electron system. Relations between this DFT Koopmans' theorem and its existing counterparts in the literature are discussed. Some of the previous results are generalized and some are simplified. DFT calculation results of a fullerene molecule, a finite single-walled carbon nanotube and a finite boron nitride nanotube are presented, indicating that this Koopmans' theorem approximately holds, even if the orbital relaxation is taken into consideration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available