4.8 Article

Lithography-free formation of nanopores in plastic membranes using laser heating

Ask authors/readers for more resources

Synthetic nanopores are a new class of single-molecule sensors capable of electronically detecting, counting, and characterizing biomolecules. There have been studies of nanopore formation in solid-state materials. This paper reports a novel lithography-free method of nanopore formation in plastic membranes fluidized using laser heating. It was found that the pore shrinking dynamics follows a universal behavior with the diameter of a pore decreasing linearly with time similar to that found in fluidized SiO2. A theoretical model based on a surface-tension-driven mass flow mechanism is proposed to successfully explain the observed universality in the pore shrinking dynamics. We demonstrate the potential of this lithography-free nanofabrication technique in biomolecular sensing with a lambda-DNA detection experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available