4.6 Article

Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2006.09.029

Keywords

mitochondria; mtDNA; insulin resistance; diabetes; respiratory chain; oxidative phosphorylation

Ask authors/readers for more resources

Insulin resistance in skeletal muscle is a characteristic feature of diabetes mellitus type 2 (DM2). Several lines of circumstantial evidence suggest that reduced mitochondrial oxidative phosphorylation capacity in skeletal muscle is a primary defect causing insulin resistance and subsequent development of DM2. We have now experimentally tested this hypothesis by characterizing glucose homeostasis in tissue-specific knockout mice with progressive respiratory chain dysfunction selectively in skeletal muscle. Surprisingly, these knockout mice are not diabetic and have an increased peripheral glucose disposal when subjected to a glucose tolerance test. Studies of isolated skeletal muscle from knockout animals show an increased basal glucose uptake and a normal increase of glucose uptake in response to insulin. In summary, our findings indicate that mitochondrial dysfunction in skeletal muscle is not a primary etiological event in DM2. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available