4.7 Article

Calculation of smooth potential energy surfaces using local electron correlation methods

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 125, Issue 18, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2364487

Keywords

-

Ask authors/readers for more resources

The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl- with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barrier heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available