4.7 Review

One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 125, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2364489

Keywords

-

Ask authors/readers for more resources

One-electron density matrices resulting from the explicitly connected commutator expansion of the expectation value were implemented at the singles and doubles coupled cluster (CCSD) level. In the proposed approach the one-electron density matrix is obtained at a little extra cost in comparison to the calculation of the CCSD correlation energy. Therefore, in terms of the computational time the new method is significantly less demanding than the conventional linear-response CCSD theory which requires additionally an expensive calculation of the left-hand solution of the CCSD equations. The quality of the new density matrices was investigated by computing a set of one-electron properties for a series of molecules of varying sizes and comparing the results with data obtained using the full configuration interaction method or higher level coupled cluster theory. It has been found that the results obtained using the new approach are of the same quality as those predicted by the linear-response CCSD method. The novel one-electron density matrices have also been applied to study the energy of the electrostatic interaction for a number of van der Waals complexes, including the benzene and azulene dimers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available