4.7 Article

Computational study of structural and dynamical properties of formamide-water mixtures

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 125, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2364896

Keywords

-

Ask authors/readers for more resources

A molecular dynamics simulation study of structural and dynamical properties in liquid mixtures of formamide and water is presented. Site-site radial pair distribution functions, local mole fractions, pair energy distributions, and tetrahedral orientational order are the quantities analyzed to investigate the local structure in the simulated mixtures, along with a review of the intermolecular structure in terms of the distribution of hydrogen bonds. Our results indicate that there is a substitution of formamide molecules by water in the hydrogen bonds and a formation of a common hydrogen bond network. By analyzing the extent of tetrahedral order in the liquid as a function of composition, it is observed that whereas the tetrahedral network of liquid water is progressively lost by increasing the formamide concentration, the water structure within the first coordination shell is preserved and somewhat enhanced. The hydrogen-bond mean lifetimes were estimated by performing a time integration of the autocorrelation functions of bond occupation numbers. The lifetimes associated with hydrogen bonds between water, formamide, and interspecies pairs are found to increase with increasing formamide concentration. The lifetimes of the water hydrogen bonds show the largest variations, supporting the picture of an enhancement of the water structure among the nearest neighbors within the first coordination shell. We have used two different force field models for water, SPC/E [J. C. Berendsen , J. Phys. Chem. 91, 6269 (1987)] and TIP4P/2005 [J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005)]. Our results for structural and dynamical properties yield very small differences between those models, the TIP4P/2005 predicting a slightly more structured liquid and, consequently, exhibiting a slightly slower translational and librational dynamics. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available