4.6 Article

Modulation of the intraseasonal rainfall over tropical brazil by the Madden-Julian oscillation

Journal

INTERNATIONAL JOURNAL OF CLIMATOLOGY
Volume 26, Issue 13, Pages 1759-1776

Publisher

WILEY
DOI: 10.1002/joc.1331

Keywords

tropical Brazil; intraseasonal rainfall; MJO; SACZ; Atlantic ITCZ

Ask authors/readers for more resources

Fifteen years (1987-2001) of rain gauge-based data are used to describe the intraseasonal rainfall variability over tropical Brazil and its associated dynamical structure. Wavelet analysis performed on rainfall time series showed significant peaks centered roughly in periods of 30-70 days, particularly in the eastern southeastern Amazon and northern northeast Brazil. A significant enhancement of precipitation with maximum anomalies in a northeastward oriented band over tropical Brazil is evidenced from empirical orthogonal function (EOF) analysis of 30-70-day filtered rainfall anomalies during rainy season (January to May). Lagged/lead composites revealed that, on a global scale, the Madden-Julian oscillation (MJO) is the main atmospheric-mechanism modulator of the pluviometric variations on intraseasonal timescale in the eastern Amazon and northeast Brazil. A coherent northward expansion of rainfall across tropical Brazil is evident during the passage of MJO over South America. Regionally, the establishment of a quasi-stationary deep convection band triggered by the simultaneous manifestation of south Atlantic convergence zone (SACZ) and intertropical convergence zone (ITCZ) explains the intensified rainfall over these regions. Such regional mechanisms are dynamically embedded within the eastward-propagating MJO-related large-scale convective envelope along tropical South America/the Atlantic Ocean. These features occur in association with a significant intraseasonal evolution of the lower-level wind and sea-surface temperature (SST) patterns, particularly in the Atlantic Ocean, including a coherent dynamical connection with atmospheric circulation, deep convective activity over South America and rainfall over tropical Brazil. Copyright (C) 2006 Royal Meteorological Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available