4.6 Article

Computational modeling of polyoxotungstates by relativistic DFT calculations of 183W NMR chemical shifts

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 12, Issue 33, Pages 8460-8471

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200600488

Keywords

chemical shifts; density functional calculations; NMR spectroscopy; polyoxometalates; tungsten

Ask authors/readers for more resources

The W-183 nuclear shielding in a variety of tungsten polyoxometalates (POM) (Lindqvist, Anderson, decatungstates, Keggin) of different shapes and charges has been modeled by DFT calculations that take into account relativistic effects, by means of the zeroorder regular approximation (ZORA), and solvent effects, by the conductor-like screening model (COSMO) continuum method. The charge/surface area ratio (q1A) is proposed as an indicator of the charge density to which the solvation energies of all POMs are correlated in a satisfactory way. Among the various theoretical levels tested (ZORA scalar or spin-orbit, frozen-core or all-electron basis set, geometry optimization in the gas phase or in the continuum solvent, etc.), the best results are obtained when both geometry optimization in solvent and spin-orbit shielding are included (mean absolute error of delta = 35 ppm). The quality of the computed chemical shifts depends systematically on the charge density as expressed by q/A; thus, POMs with low q/A ratios display the best agreement with experimental data. The performance of the method is such that computed values can aid the assignment of the W-183 NMR spectra of polyoxotungstates, as shown by the case of alpha-[PW11TiO40](5-), whose six signals are ranked computationally so as to almost reproduce the experimental ordering even though the signals are spaced by as little as 5 ppm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available