4.6 Article

Focused ion beam induced deflections of freestanding thin films

Journal

JOURNAL OF APPLIED PHYSICS
Volume 100, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2363900

Keywords

-

Funding

  1. NHGRI NIH HHS [R01 HG003703, R01 HG002338, R01 HG002338-03] Funding Source: Medline

Ask authors/readers for more resources

Prominent deflections are shown to occur in freestanding silicon nitride thin membranes when exposed to a 50 keV gallium focused ion beam for ion doses between 10(14) and 10(17) ions/cm(2). Atomic force microscope topographs were used to quantify elevations on the irradiated side and corresponding depressions of comparable magnitude on the back side, thus indicating that what at first appeared to be protrusions are actually the result of membrane deflections. The shape in high-stress silicon nitride is remarkably flat-topped and differs from that in low-stress silicon nitride. Ion beam induced biaxial compressive stress generation, which is a known deformation mechanism for other amorphous materials at higher ion energies, is hypothesized to be the origin of the deflection. A continuum mechanical model based on this assumption convincingly reproduces the profiles for both low-stress and high-stress membranes and provides a family of unusual shapes that can be created by deflection of freestanding thin films under beam irradiation. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available