4.6 Article

Effect of miscibility and forced compatibility on damping properties of CIIR/PAc blend

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 102, Issue 4, Pages 3127-3133

Publisher

WILEY
DOI: 10.1002/app.24252

Keywords

butyl rubber; polyacrylate; blend; microphase structure; damping behavior

Ask authors/readers for more resources

In this study, a kind of novel damping materials was prepared based on the blend of chlorinated butyl rubber (CIIR) and polyacrylate (PAc) synthesized by different molar ratio of butyl methacrylate and ethyl acrylate. Research results from experiments and analyses by employing DMA, TEM, and FTIR show that whether at a cocured system or noncocured system, it can be achieved to shift a loss peak of CIIR towards a higher temperature region and to keep the damping value from markedlly decreasing, which broadens the effective damping function area of CIIR to the vicinity of ambient temperature. In the former system, the thermodynamical miscibility of CIIR and PAc, to some extent, is predominated by the molecular design of PAc, while in the latter system, covulcanized networks play a more significant role in improving compatibility and abating the peak split, though the suppression effect of thermal stress on the transition of CUR T-11 transition still can not be neglected. Furthermore, transition state derived from the cocuring CIIR and PAc cannot make the phase separation completely take place, and consequently results in the deformation of phase morphology of the cocured CIIR/PAc blend. It is the influence of thermodynamics miscibility and forced compatibility in different size that makes the suppression effect of foreign PAc on CIIR T-11 transition be controllable. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available