4.8 Article

Biosensing systems for the detection of bacterial quorum signaling molecules

Journal

ANALYTICAL CHEMISTRY
Volume 78, Issue 22, Pages 7603-7609

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac061421n

Keywords

-

Ask authors/readers for more resources

Bacterial quorum sensing (QS) is a cell-to-cell communication phenomenon that allows bacteria to control the expression of certain specialized genes depending on their cell population size. Signaling molecules such N-acylhomoserine lactones (AHLs) mediate the communication, and their concentration reflects the bacterial population density. Quorum sensing regulates several processes including bacterial pathogenicity. We developed a method for the rapid, sensitive, and quantitative detection of AHLs in biological samples such as saliva and stools. The method is based on whole-cell sensing systems that employ QS regulatory systems as recognition elements and the luxCDABE gene cassette as a reporter. The method proved to be reproducible when applied to real samples and was able to detect low analyte concentrations down to 1 x 10(-9) M without requiring extensive sample preparation. We envision that this novel biosensing system could be employed in the diagnosis and management of various bacteria-related disorders, thus supporting the use of quorum sensing molecules as potential biomarkers of disease. Due to cost-effectiveness and high throughput, these biosensing systems could be successfully employed as a new tool for the screening of novel drugs that target quorum sensing mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available