4.8 Article

Photocatalytic degradation of gaseous organic species on photonic band-gap titania

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 40, Issue 22, Pages 7029-7033

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es061045o

Keywords

-

Ask authors/readers for more resources

The use of photonic band gap (PBG) titania ( inverse opal) for the photocatalytic degradation of an organic chemical in air is demonstrated in this study using 1,2-dichlorobenzene. A photonic band gap in the mid-to-high ultraviolet (UV) wavelength range (280-380 nm), normally associated with the optimal photocatalytic activity of anatase titania, is expected to increase the quantum efficiency for the catalyst. To achieve this band gap, porous structures with alternating air and titania spaces with a periodicity of about 150 nm is required. A thin film of porous photonic titania was synthesized in-situ on a quartz glass rod with a sol-gel technique using polystyrene micro-spheres as templates. Scanning electron microscopy images revealed a pore size of about 100 nm and a periodicity of similar to 150 nm, necessary for the desired band gap. X-ray diffraction studies of the coating showed the presence of anatase titania, which is known to exhibit photoactivity. The photocatalytic activity of the coated titania film was verified by measuring the degradation of 1,2-dichlorobenzene vapor in a semi-batch mode in the presence of UV radiation (mid-high UV wavelength) PBG titania showed 248% higher photonic efficiency compared to commercially available P25 titania catalyst. Transmission spectra from the thin films showed high absorbance in the UV range, suggesting a band gap in the region of UV illumination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available