4.7 Article

Bayesian estimation of hardness ratios: Modeling and computations

Journal

ASTROPHYSICAL JOURNAL
Volume 652, Issue 1, Pages 610-628

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/507406

Keywords

methods : statistical; stars : flare; X-rays : binaries

Ask authors/readers for more resources

A commonly used measure to summarize the nature of a photon spectrum is the so-called hardness ratio, which compares the numbers of counts observed in different passbands. The hardness ratio is especially useful to distinguish between and categorize weak sources as a proxy for detailed spectral fitting. However, in this regime classical methods of error propagation fail, and the estimates of spectral hardness become unreliable. Here we develop a rigorous statistical treatment of hardness ratios that properly deals with detected photons as independent Poisson random variables and correctly deals with the non-Gaussian nature of the error propagation. The method is Bayesian in nature and thus can be generalized to carry out a multitude of source-population-based analyses. We verify our method with simulation studies and compare it with the classical method. We apply this method to real-world examples, such as the identification of candidate quiescent low-mass X-ray binaries in globular clusters and tracking the time evolution of a flare on a low-mass star.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available