4.6 Article

Protein interactions with self-assembled monolayers presenting multimodal ligands: A surface plasmon resonance study

Journal

LANGMUIR
Volume 22, Issue 24, Pages 10152-10156

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la062093p

Keywords

-

Ask authors/readers for more resources

This paper describes the use of surface plasmon resonance (SPR) spectroscopy and self-assembled monolayers (SAMs) to understand the characteristics of surfaces that promote the adsorption of proteins at high ionic strengths (high-salt conditions). We synthesized SAMs presenting different multimodal ligands and determined the influence of surface composition, solution composition, and the nature of the protein on the extent of protein adsorption onto the SAMs. Our results confirm that hydrophobic interactions can contribute significantly to protein adsorption under high-salt conditions. In particular, the extent of protein adsorption under high-salt conditions increased with increasing surface hydrophobicity. The extent of protein adsorption was also influenced by the solution composition and decreased with an increase in the chaotropicity of the anion. The combination of SPR and SAMs is well-suited for studying the interaction of proteins with complex surfaces of relevance to chromatography.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available