4.7 Article

A quantum-classical approach to the molecular dynamics of pyrazine with a realistic model Hamiltonian

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 125, Issue 19, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2393228

Keywords

-

Ask authors/readers for more resources

We investigate the molecular dynamics of pyrazine after excitation to the S-2 electronic state by using the time-dependent discrete variable representation (TDDVR) method. The investigation has been carried out with a realistic 24-mode model Hamiltonian consisting of all the vibrational degrees of freedom of pyrazine molecule. First, we perform the simulation on a basic four-mode model, and then by including additional eight important modes and finally, by introducing 20 bath modes on the basic model. This sequential inclusion of bath modes demonstrates the effect of weak modes on the subsystem, where the calculations of energy and population transfer from basic model to the bath quantify the same effect. The spectral profile obtained by using TDDVR approach shows reasonably good agreement with the results calculated by quantum mechanical approach. It appears that the TDDVR approach for those large systems where quantum mechanical description is needed in a restricted region is a good compromise between accuracy and speed. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available