4.8 Article

Experimental characterization of in-plane permeability of gas diffusion layers

Journal

JOURNAL OF POWER SOURCES
Volume 162, Issue 2, Pages 1226-1231

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2006.07.058

Keywords

permeability; GDL; fuel cells; measurements; porous media; radial flow

Ask authors/readers for more resources

Recent studies indicate that PEM fuel cell performance may be strongly influenced by in-plane permeability of the gas diffusion layer (GDL). The current study employs a radial flow technique for obtaining in-plane permeability of GDLs, using either gas or liquid as the impregnating fluid. A model has been developed and experimentally verified to account for compressibility effects when permeability measurements are conducted using a gas. Permeability experiments are performed on samples of woven, non-woven, and carbon fiber-based GDL at various levels of compression using air as the impregnating fluid. Woven and non-woven samples are measured to have significantly higher in-plane permeability compared to carbon fiber paper at similar solid volume fractions. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available