4.5 Article

Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 46, Pages 22987-22990

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp065819z

Keywords

-

Ask authors/readers for more resources

Among recently synthesized isoreticular metal-organic frameworks (IRMOFs), interpenetrating IRMOFs show high hydrogen adsorption capacities at low temperature and under ambient pressure. However, little is known about the molecular basis of their hydrogen binding properties. In this work, we performed grand canonical Monte Carlo (GCMC) simulations to investigate the effect of catenation on the interactions between hydrogen molecules and IRMOFs. We identified the adsorption sites and analyzed the adsorption energy distributions. The simulation results show that the small pores generated by catenation can play a role to confine the hydrogen molecules more densely, so that the capacity of the interpenetrating IRMOFs could be higher than that of the non-interpenetrating IRMOFs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available