4.6 Article

Fission yeast homologs of human histone H3 lysine 4 demethylase regulate a common set of genes with diverse functions

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 47, Pages 35983-35988

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M606349200

Keywords

-

Funding

  1. Intramural NIH HHS Funding Source: Medline
  2. NIGMS NIH HHS [GM61204] Funding Source: Medline

Ask authors/readers for more resources

Schizosaccharomyces pombe contains two proteins, SWIRM1 and SWIRM2, with close homology to human histone H3 lysine 4 demethylase. Both proteins contain the amino oxidase catalytic domain and a recently described DNA interaction SWIRM domain. Here we describe the biochemical isolation and the functional characterization of SWIRM1 and SWIRM2. Our results indicate that while SWIRM2 is an essential gene, cells lacking SWIRM1 are viable. We found that SWIRM1 and SWIRM2 are stably associated in a multiprotein complex, but intriguingly, unlike their human counterpart, S. pombe SWIRM complex contains neither a histone deacetylase nor any detectable demethylase activity. Genome-wide chromatin immunoprecipitation unexpectedly showed the absence of both SWIRM proteins from heterochromatic domains. Instead, consistent with biochemical analyses, SWIRM1 and SWIRM2 co-localize to a common set of target gene promoters whose functions are implicated in diverse processes including mitochondrial metabolism and transcriptional regulation. Importantly, we show that SWIRM1 is not only required for optimum transcription of its target genes but also display a global role in regulation of antisense transcription.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available