4.7 Article

Efficient N-arylation and N-alkenylation of the five DNA/RNA nucleobases

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 71, Issue 24, Pages 9183-9190

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo061694i

Keywords

-

Ask authors/readers for more resources

[GRAPHICS] A general approach to N-arylation and N-alkenylation of all five DNA/RNA nucleobases at the nitrogen atom normally attached to the sugar moiety in DNA or RNA has been developed. Various protected or masked nucleobases engaged readily in the copper-mediated Chan-Lam-Evans-modified Ullmann condensation with a range of different boronic acids at room temperature and were subsequently converted to the corresponding deprotected or unmasked adducts. Different N-3-protecting groups were examined in the case of thymine, where the benzoyl group afforded the highest yields. A 4-alkylthio-substituted pyrimidin-2(1H)-one served as both a cytosine and a uracil precursor and was N-arylated and N-alkenylated in high yields. Adenine was efficiently and selectively N-arylated and N-alkenylated at the N-9 position by employing a bis-Boc-protected adenine derivative, while a bis-Boc-protected 2-amino-6-chloropurine served as guanine precursor and could also be selectively N-9-arylated and N-9-alkenylated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available