4.7 Article

Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity

Journal

CIRCULATION RESEARCH
Volume 99, Issue 11, Pages 1252-1260

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000250821.32324.e1

Keywords

voltage-dependent potassium channels; vascular smooth muscle; cerebral arteries; subarachnoid hemorrhage; oxyhemoglobin

Funding

  1. NCRR NIH HHS [P20 RR16435] Funding Source: Medline
  2. NHLBI NIH HHS [R01 HL078983] Funding Source: Medline
  3. NINDS NIH HHS [R01 NS050623] Funding Source: Medline

Ask authors/readers for more resources

Cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences. Oxyhemoglobin (oxyhb) has been implicated in SAH-induced cerebral vasospasm as it causes cerebral artery constriction and increases tyrosine kinase activity. Voltage-dependent, Ca(2+)-selective and K(+)-selective ion channels play an important role in the regulation of cerebral artery diameter and represent potential targets of oxyhb. Here we provide novel evidence that oxyhb selectively decreases 4-aminopyridine sensitive, voltage-dependent K(+) channel (K(v)) currents by approximate to 30% in myocytes isolated from rabbit cerebral arteries but did not directly alter the activity of voltage-dependent Ca(2+) channels or large conductance Ca(2+)-activated (BK) channels. A combination of tyrosine kinase inhibitors (tyrphostin AG1478, tyrphostin A23, tyrphostin A25, genistein) abolished both oxyhb-induced suppression of K(v) channel currents and oxyhb-induced constriction of isolated cerebral arteries. The K(v) channel blocker 4-aminopyridine also inhibited oxyhb-induced cerebral artery constriction. The observed oxyhb-induced decrease in K(v) channel activity could represent either channel block, or a decrease in K(v) channel density on the plasma membrane. To explore whether oxyhb altered trafficking of K(v) channels to the plasma membrane, we used an antibody generated against an extracellular epitope of K(v)1.5 channels. In the presence of oxyhb, staining of K(v)1.5 on the plasma membrane surface was markedly reduced. Furthermore, oxyhb caused a loss of spatial distinction between staining with K(v)1.5 and the general anti-phosphotyrosine antibody PY-102. We propose that oxyhb-induced suppression of K(v) currents occurs via a mechanism involving enhanced tyrosine kinase activity and channel endocytosis. This novel mechanism may contribute to oxyhb-induced cerebral artery constriction following SAH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available