4.8 Article

Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0608845103

Keywords

fluorescence microscopy; processing bodies; post-transcriptional control; dynamics

Funding

  1. NCI NIH HHS [P01 CA042063, P30 CA014051, P30-CA14051, P01 CA42063] Funding Source: Medline

Ask authors/readers for more resources

Argonaute proteins associate with microRNAs (miRNAs) that bind mRNAs through partial base-pairings to primarily repress translation in animals. A fraction of Argonaute proteins and miRNAs biochemically cosediment with polyribosomes, yet another fraction paradoxically accumulates in ribosome-free processing bodies (PBs) in the cytoplasm. In this report, we give a quantitative account of the Argonaute protein localization and dynamics in living cells in different cellular states. We find that the majority of Argonaute is distributed diffusely in the cytoplasm, and, when cells are subjected to stress, Argonaute proteins accumulate to newly assembled structures known as stress granules (SGs) in addition to PBs. Argonaute proteins displayed distinct kinetics at different structures: exchange faster at SGs and much slower at PBs. Further, miRNAs are required for the Argonaute protein localization to SGs but not PBs. These quantitative kinetic data provide insights into miRNA-mediated repression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available