4.7 Review

Synthesis and characterization of corrosion protective poly(2,5-dimethylaniline) coatings on copper

Journal

APPLIED SURFACE SCIENCE
Volume 253, Issue 3, Pages 1037-1045

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2006.02.007

Keywords

corrosion resistant coatings; conducting polymers; poly(2,5-dimethylaniline) coatings; copper; electrochemical polymerization; cyclic voltammetry

Ask authors/readers for more resources

Poly(2,5-dimethylaniline) coatings were synthesized on copper (Cu) by electrochemical polymerization of 2,5-dimethylaniline in aqueous salicylate solution by using cyclic voltammetry. The characterization of these coatings was carried out by cyclic voltammetry, UV-visible absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The results of these characterizations indicate that the aqueous salicylate solution is a suitable medium for the electrochemical polymerization of 2,5-dimethylaniline to generate strongly adherent and smooth poly (2,5-dimethylaniline) coatings on Cu substrates. The performance of poly(2,5-dimethylaniline) as protective coating against corrosion of Cu in aqueous 3% NaCl was assessed by the potentiodynamic polarization technique. The results of the potentiodynamic polarization demonstrate that the poly(2,5-dimethylaniline) coating has ability to protect the Cu against corrosion. The corrosion potential was about 0.078 V versus SCE more positive in aqueous 3% NaCl for the poly(2,5-dimethylaniline) coated Cu than that of uncoated Cu and reduces the corrosion rate of Cu almost by a factor of 31. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available