4.5 Article

Planning under uncertainty using model predictive control for information gathering

Journal

ROBOTICS AND AUTONOMOUS SYSTEMS
Volume 54, Issue 11, Pages 898-910

Publisher

ELSEVIER
DOI: 10.1016/j.robot.2006.05.008

Keywords

Nonlinear Model Predictive Control; simultaneous localization and map building (SLAM); target localization; Extended Kalman Filter (EKF); Extended Information Filter (EIF); optimization

Ask authors/readers for more resources

This paper considers trajectory planning problems for autonomous robots in information gathering tasks. The objective of the planning is to maximize the information gathered within a finite time horizon. It is assumed that either the Extended Kalman Filter (EKF) or the Extended Information Filter (EIF) is applied to estimate the features of interest and the information gathered is expressed by the covariance matrix, or information matrix. It is shown that the planning process can be formulated as an optimal control problem for a nonlinear control system with a gradually identified model. This naturally leads to the Model Predictive Control (MPC) planning strategy, which uses the updated knowledge about the model to solve a finite horizon optimal control problem at each time step and only executes the first control action. The proposed MPC framework is demonstrated through solutions to two challenging information gathering tasks: (1) Simultaneous planning, localization, and map building (SPLAM) and (2) Multi-robot Geolocation. It is shown that MPC can effectively deal with dynamic constraints, multiple robots/features and a range of objective functions. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available