4.5 Article

Investigation of field emission and photoemission properties of high-purity single-walled carbon nanotubes synthesized by hydrogen arc discharge

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 47, Pages 23742-23749

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0634407

Keywords

-

Ask authors/readers for more resources

Single-walled carbon nanotubes (SWCNTs) were directly synthesized by a hydrogen arc-discharge method by using only Fe catalyst. The synthesized carbon materials indicated high-purity SWCNTs without amorphous carbon materials from SEM observation. The SWCNTs had diameters of 1.5-2.0 nm from TEM and Raman observation. After a simple purification, TGA indicated that SWCNTs had a purity of ca. 90.1 wt %. Field emission from the SWCNT emitters which were fabricated by using a spray method was measured by a diode structure. The vertically aligned SWCNT emitters showed the low turn-on voltage of 0.86 V/mu m and a high emission-current density of 3 mA/cm(2) at an applied field of about 3 V/mu m. From a Fowler-Nordheim plot, the vertically aligned SWCNT revealed a high field enhancement factor of 2.35 x 10(4). The photoemission measurements, excited by a photon energy of 360 eV, showed significantly delocalized graphite-pi states at the purified SWCNTs. Here, we investigated that the field-emission properties of SWCNTs would be attributed to the high electronic density of states near Fermi energy, including the delocalized graphite-pi states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available