4.5 Article

Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size

Journal

PHYSIOLOGY & BEHAVIOR
Volume 89, Issue 4, Pages 517-524

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.physbeh.2006.08.018

Keywords

MC4R; satiation; satiety; brainstem; CREB; cAMP

Funding

  1. NIDDK NIH HHS [P30 DK072476] Funding Source: Medline

Ask authors/readers for more resources

Ingestive behavior is controlled by a complex interplay between signals conveying availability of (1) potentially ingestible food in the environment, (2) digestible food in the alimentary canal, (3) circulating fuels and (4) stored fuels. Each of these four classes of signals interact with specific sensors and neural circuits whose integrated output determines when food intake is initiated and when it is stopped. Because the final common path responsible for oromotor control is contained within complex neural pattern generators within the brainstem and is intimately linked to sensory information from the alimentary canal, at least part of the integration between the four classes of signals is thought to take place at the level of the caudal brainstem. Here we show that CCK, representing a class 2, or direct signal, and MC4-melanocortin receptor activity, representing a second order class 3/4, or indirect signal, converge in the nucleus of the solitary tract where they modulate activity of the mitogen-activated, extracellular-signal regulated kinases 1 and 2 (ERK) pathway to determine the level of satiation. Blockade of this signaling pathway attenuates suppression of deprivation-induced food intake by intraperitoneal CCK and fourth ventricular MTII injection. Additional findings suggest that specific ERK-phosphorylation sites on ion channels and enzymes involved in catecholamine synthesis of NTS neurons may be involved in ERK-mediated satiation and meal termination. Longer-term downstream effects of ERK activation might involve CREB-mediated gene transcription known to produce plasticity changes in neurocircuitry that could determine inter-meal intervals and the size of future meals. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available