4.7 Article

Condition for liquefaction instability in fluid-saturated granular soils

Journal

ACTA GEOTECHNICA
Volume 1, Issue 4, Pages 211-224

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11440-006-0017-5

Keywords

Bifurcation; Instability; Liquefaction; Undrained condition; Saturated sands

Funding

  1. US National Science Foundation [CMS-0201317]

Ask authors/readers for more resources

High-porosity granular materials such as loose sands can implode when subjected to compressive stresses. The mechanism of deformation is diffuse in that the jump in the strain rate tensor has three independent eigenvalues (full rank), in contrast to the jump in the strain rate tensor for a deformation band-type instability that has one eigenvalue (rank one). Recently, the mechanism of volume implosion has been studied in the context of material instability. In this paper we move one step further and consider the effect of a volume constraint associated with the presence of fluids in the pores of granular materials that have a tendency to implode. The upshot of this constraint is that at the onset of liquefaction the solid matrix deforms in a nearly isochoric fashion at the same time that the pore fluid pressure increases. The corresponding eigenmode (e-mode) is represented by jumps in the strain rate tensor and rate of pore fluid pressure. The framework presented in this work is used to analyze the onset of liquefaction instability in very loose Hostun RF sand tested in undrained triaxial compression and extension.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available