4.5 Article

Cilostamide potentiates more the positive inotropic effects of (-)-adrenaline through β2-adrenoceptors than the effects of (-)-noradrenaline through β1-adrenoceptors in human atrial myocardium

Journal

NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY
Volume 374, Issue 3, Pages 249-253

Publisher

SPRINGER
DOI: 10.1007/s00210-006-0119-5

Keywords

human atrial trabeculae; contractility; (-) noradrenaline and (-) adrenaline; cilostamide and rolipram; phosphodiesterase3; beta(1)- than beta(2)-adrenoceptors; beta(1)-blocker treatment

Ask authors/readers for more resources

Activation of both beta(1)- and beta(2)-adrenoceptors increases the contractility of human atrial myocardium through cyclic AMP-dependent pathways. Cyclic AMP is hydrolised by phosphodiesterases, but little is known about which isoenzymes catalyse inotropically relevant cyclic AMP accumulated upon stimulation of beta-adrenoceptor subtypes. We have compared the positive inotropic effects of (-)-noradrenaline and (-)-adrenaline, mediated through beta(1)- and beta(2)-adrenoceptors, respectively, in the absence and presence of the PDE3 inhibitor cilostamide (300 nM) or PDE4 inhibitor rolipram (1 mu M) on human atrial trabeculae from non-failing hearts. Cilostamide, but not rolipram, potentiated the effects of both (-)-noradrenaline and (-)-adrenaline. Cilostamide increased the -logEC(50)M of (-)-adrenaline more than of (-)-noradrenaline (P < 0.05), regardless of whether or not the patients had been chronically treated with beta-blockers. The results are consistent with a greater PDE3-catalysed hydrolysis of inotropically relevant cyclic AMP produced through beta(2)-adrenoceptors than beta(1)-adrenoceptors in human atrium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available