4.4 Article

Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAA.23.003177

Keywords

-

Categories

Ask authors/readers for more resources

The concept of numerical parametric lenses (NPL) is introduced to achieve wavefront reconstruction in digital holography. It is shown that operations usually performed by optical components and described in ray geometrical optics, such as image shifting, magnification, and especially complete aberration compensation (phase aberrations and image distortion), can be mimicked by numerical computation of a NPL. Furthermore, we demonstrate that automatic one-dimensional or two-dimensional fitting procedures allow adjustment of the NPL parameters as expressed in terms of standard or Zernike polynomial coefficients. These coefficients can provide a quantitative evaluation of the aberrations generated by the specimen. Demonstration is given of the reconstruction of the topology of a microlens. (c) 2006 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available