4.7 Article

SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS

Journal

NATURE NEUROSCIENCE
Volume 9, Issue 12, Pages 1479-1487

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1808

Keywords

-

Categories

Ask authors/readers for more resources

A central event in synapse development is formation of the presynaptic active zone in response to positional cues. Three active zone proteins, RIM, ELKS (also known as ERC or CAST) and Liprin-alpha, bind each other and are implicated in linking active zone formation to synaptic vesicle release. Loss of function in Caenorhabditis elegans syd-2 Liprin-alpha alters the size of presynaptic specializations and disrupts synaptic vesicle accumulation. Here we report that a missense mutation in the coiled-coil domain of SYD-2 causes a gain of function. In HSN synapses, the syd-2(gf) mutation promotes synapse formation in the absence of syd-1, which is essential for HSN synapse formation. syd-2(gf) also partially suppresses the synaptogenesis defects in syg-1 and syg-2 mutants. The activity of syd-2(gf) requires elks-1, an ELKS homolog; but not unc-10, a RIM homolog. The mutant SYD-2 shows increased association with ELKS. These results establish a functional dependency for assembly of the presynaptic active zone in which SYD-2 plays a key role.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available