4.7 Article

Vector form factor in Kl3 semileptonic decay with two flavors of dynamical domain-wall quarks

Journal

PHYSICAL REVIEW D
Volume 74, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.74.114502

Keywords

-

Ask authors/readers for more resources

We calculate the vector form factor in K ->pi l nu semileptonic decays at zero momentum transfer f(+)(0) from numerical simulations of two-flavor QCD on the lattice. Our simulations are carried out on 16(3)x32 at a lattice spacing of a similar or equal to 0.12 fm using a combination of the DBW2 gauge and the domain-wall quark actions, which possesses excellent chiral symmetry even at finite lattice spacings. The size of fifth dimension is set to L-s=12, which leads to a residual quark mass of a few MeV. Through a set of double ratios of correlation functions, the form factor calculated on the lattice is accurately interpolated to zero momentum transfer, and then is extrapolated to the physical quark mass. We obtain f(+)(0)=0.968(9)(6), where the first error is statistical and the second is the systematic error due to the chiral extrapolation. Previous estimates based on a phenomenological model and chiral perturbation theory are consistent with our result. Combining with an average of the decay rate from recent experiments, our estimate of f(+)(0) leads to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element vertical bar V-us vertical bar=0.2245(27), which is consistent with CKM unitarity. These estimates of f(+)(0) and vertical bar V-us vertical bar are subject to systematic uncertainties due to the finite lattice spacing and quenching of strange quarks, though nice consistency in f(+)(0) with previous lattice calculations suggests that these errors are not large.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available