4.6 Review

Centromeres put epigenetics in the driver's seat

Journal

TRENDS IN BIOCHEMICAL SCIENCES
Volume 31, Issue 12, Pages 662-669

Publisher

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tibs.2006.10.004

Keywords

-

Ask authors/readers for more resources

A defining feature of chromosomes is the centromere, the site for spindle attachment at mitosis and meiosis. Intriguingly, centromeres of plants and animals are maintained by both sequence-specific and sequence-independent (epigenetic) processes. Epigenetic inheritance might enable kinetochores (the structures that attach centromeres to spindles) to maintain an optimal size. However, centromeres are susceptible to the evolution of 'selfish' DNA repeats that bind to kinetochore proteins. We argue that such sequence-specific interactions are evolutionarily unstable because they enable repeat arrays to influence kinetochore size. Changes in kinetochore size could affect the interaction of kinetochores with the spindle and, in principle, skew Mendelian segregation. We propose that key kinetochore proteins have adapted to disrupt such sequence-specific interactions and restore epigenetic inheritance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available