4.4 Article

Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local α-motoneuron responses

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 96, Issue 6, Pages 2995-3005

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00061.2006

Keywords

-

Ask authors/readers for more resources

Microstimulation within the motor regions of the spinal cord is often assumed to activate motoneurons and propriospinal neurons close to the electrode tip. However, previous work has shown that intraspinal microstimulation (ISMS) in the gray matter activates sensory afferent axons as well as alpha-motoneurons (MNs). Here we report on the recruitment of sensory afferent axons and MNs as ISMS amplitudes increased. Intraspinal microstimulation was applied through microwires implanted in the dorsal horn, intermediate region and ventral horn of the L-5-L-7 segments of the spinal cord in four acutely decerebrated cats, two of which had been chronically spinalized. Activation of sensory axons was detected with electroneurographic recordings from dorsal roots. Activation of MNs was detected with electromyographic (EMG) recordings from hindlimb muscles. Sensory axons were nearly always activated at lower stimulus levels than MNs irrespective of the stimulating electrode location. EMG response latencies decreased as ISMS stimulus intensities increased, suggesting that MNs were first activated transsynaptically and then directly as intensity increased. ISMS elicited antidromic activity in dorsal root filaments with entry zones up to 17 mm rostral and caudal to the stimulation sites. We posit that action potentials elicited in localized terminal branches of afferents spread antidromically to all terminal branches of the afferents and transsynaptically excite MNs and interneurons far removed from the stimulation site. This may help explain how focal ISMS can activate many MNs of a muscle even though they are distributed in long thin columns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available